A neutron detector using integrated circuits
نویسنده
چکیده
With the advancements and miniaturization in semiconductor technology, the circuits within integrated circuits have become increasingly sensitive to the effects of radiation, and therefore, are susceptible to improper functioning in high radiation fields. The researchers at Texas A&M University have been able to manipulate this disadvantage into an advantage for radiation detection applications, by designing the radiation integrated circuit (RIC). The RIC consists of two regions, radiation-sensitive areas (RSAs) and radiationhardened areas (RHAs). To employ RICs for neutron detection purposes, a neutron reactive material is required to generate charged particles, which interact with the RSAs. This report presents the research and investigation carried out on natural boron (19.9% B), enriched boron (96% B), boron carbide (~75% B), and lithium fluoride (~24% Li) as the neutron-reactive coating. To do this, MCNPX (Monte Carlo N-Particle eXtended) simulations were performed, to assess the neutron detection performance of these coatings on the RICs. The analysis focused on determining the optimal yield of charged particles at the RIC-coating interface. In addition, a signal to noise (S/N) ratio was investigated that analyzed energy deposition from heavy charged particles (HCPs) compared to electrons. The highest yield of charged particles was tallied for the enriched boron, followed by boron carbide, lithium fluoride, and natural boron. For the 3-μm thick enriched boron coating, the highest yield of charged particles was estimated entering the RIC to interact with the RSAs. With this optimal thickness of enriched boron, HCPs deposited three orders of magnitude more energy than electrons. This indicated the noise created from electrons interactions would be insignificant compared to the signal produced by the HCPs.
منابع مشابه
Passive neutron area monitor with CR39
Background: In high-intensity, mixed and pulsed neutron fields the use of spectrometers or area monitors with active detectors is useless in these conditions neutron measuring devices must have a passive detector. Here a passive neutron area monitor with CR39 track detector was designed and the response was calculated. Materials and Methods: The response of a passive neutron area monitor with C...
متن کاملSimulation of a Neutron Detector for Real Time Imaging Applications
Monte Carlo Method is used to simulate a double layer gadolinium-amorphous silicon thermal neutron detector. The detector fabricated in pixel array configuration has various applications including neutron imaging. According to the simulation results, a detector consisting of a gadolinium (Gd) film with thickness of 2-4 ~m, sandwiched properly with two layers of sufficiently thick (-30 ?µm) hydr...
متن کاملA MEMS Capacitive Microphone Modelling for Integrated Circuits
In this paper, a model for MEMS capacitive microphone is presented for integrated circuits. The microphone has a diaphragm thickness of 1 μm, 0.5 × 0.5 mm2 dimension, and an air gap of 1.0 μm. Using the analytical and simulation results, the important features of MEMS capacitive microphone such as pull-in voltage and sensitivity are obtained 3.8v and 6.916 mV/Pa, respectively while there is no...
متن کاملساخت و آزمایش آشکارساز ترموپیلی نوترون در ستون حرارتی رآکتور تحقیقاتی تهران
Upon increasing needs and vast application of neutron detectors, especially in nuclear reactors and growing number of linear accelerators, design and manufacturing of neutron detectors is a serious demand. The aim of this project is building neutron detectors capable of compensating gamma and temperature response in a radiation media. A special thermocouple coated with Boron carbide at the junc...
متن کاملDesign and calibration of a passive detector for separating neutron, proton and alpha particles in mixed radiation fields
In this study, calibration process was carried out for deigned new CR-39 nuclear track detector for protons, neutrons and alpha particles separately under the same etching condition. In order to aim this purpose, americium-beryllium standard source (241Am-Be) and Plexiglas phantom for neutron irradiation, brass collimators and americium standard source (241Am) for alpha irradiation and the acce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017